4 resultados para myosin light chains
em Massachusetts Institute of Technology
Resumo:
We address the problem of jointly determining shipment planning and scheduling decisions with the presence of multiple shipment modes. We consider long lead time, less expensive sea shipment mode, and short lead time but expensive air shipment modes. Existing research on multiple shipment modes largely address the short term scheduling decisions only. Motivated by an industrial problem where planning decisions are independent of the scheduling decisions, we investigate the benefits of integrating the two sets of decisions. We develop sequence of mathematical models to address the planning and scheduling decisions. Preliminary computational results indicate improved performance of the integrated approach over some of the existing policies used in real-life situations.
Resumo:
Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).
Resumo:
We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.
Resumo:
This working paper was originally printed in the Working Paper Series of the MIT International Motor Vehicle Program