5 resultados para model driven system, semantic representation, semantic modeling, enterprise system development

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tsunoda et al. (2001) recently studied the nature of object representation in monkey inferotemporal cortex using a combination of optical imaging and extracellular recordings. In particular, they examined IT neuron responses to complex natural objects and "simplified" versions thereof. In that study, in 42% of the cases, optical imaging revealed a decrease in the number of activation patches in IT as stimuli were "simplified". However, in 58% of the cases, "simplification" of the stimuli actually led to the appearance of additional activation patches in IT. Based on these results, the authors propose a scheme in which an object is represented by combinations of active and inactive columns coding for individual features. We examine the patterns of activation caused by the same stimuli as used by Tsunoda et al. in our model of object recognition in cortex (Riesenhuber 99). We find that object-tuned units can show a pattern of appearance and disappearance of features identical to the experiment. Thus, the data of Tsunoda et al. appear to be in quantitative agreement with a simple object-based representation in which an object's identity is coded by its similarities to reference objects. Moreover, the agreement of simulations and experiment suggests that the simplification procedure used by Tsunoda (2001) is not necessarily an accurate method to determine neuronal tuning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel scheme ("Categorical Basis Functions", CBF) for object class representation in the brain and contrast it to the "Chorus of Prototypes" scheme recently proposed by Edelman. The power and flexibility of CBF is demonstrated in two examples. CBF is then applied to investigate the phenomenon of Categorical Perception, in particular the finding by Bulthoff et al. (1998) of categorization of faces by gender without corresponding Categorical Perception. Here, CBF makes predictions that can be tested in a psychophysical experiment. Finally, experiments are suggested to further test CBF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.