1 resultado para model calibration
em Massachusetts Institute of Technology
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (5)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (38)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (5)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (73)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (681)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (3)
- University of Michigan (2)
- University of Queensland eSpace - Australia (10)
Resumo:
We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.