3 resultados para mobility aware metrics
em Massachusetts Institute of Technology
Resumo:
Location is a primary cue in many context-aware computing systems, and is often represented as a global coordinate, room number, or Euclidean distance various landmarks. A user?s concept of location, however, is often defined in terms of regions in which common activities occur. We show how to partition a space into such regions based on patterns of observed user location and motion. These regions, which we call activity zones, represent regions of similar user activity, and can be used to trigger application actions, retrieve information based on previous context, and present information to users. We suggest that context-aware applications can benefit from a location representation learned from observing users. We describe an implementation of our system and present two example applications whose behavior is controlled by users? entry, exit, and presence in the zones.
Resumo:
The image comparison operation ??sessing how well one image matches another ??rms a critical component of many image analysis systems and models of human visual processing. Two norms used commonly for this purpose are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric better captures the perceptual notion of image similarity than the other. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created via vector quantization. In both conditions the subjects showed a consistent preference for images matched using the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity.
Resumo:
We present a low cost and easily deployed infrastructure for location aware computing that is built using standard Bluetooth® technologies and personal computers. Mobile devices are able to determine their location to room-level granularity with existing bluetooth technology, and to even greater resolution with the use of the recently adopted bluetooth 1.2 specification, all while maintaining complete anonymity. Various techniques for improving the speed and resolution of the system are described, along with their tradeoffs in privacy. The system is trivial to implement on a large scale – our network covering 5,000 square meters was deployed by a single student over the course of a few days at a cost of less than US$1,000.