5 resultados para mobile robots
em Massachusetts Institute of Technology
Resumo:
This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.
Resumo:
A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.
Resumo:
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.
Resumo:
In the four years that the MIT Mobile Robot Project has benn in existence, we have built ten robots that focus research in various areas concerned with building intelligent systems. Towards this end, we have embarked on trying to build useful autonomous creatures that live and work in the real world. Many of the preconceived notions entertained before we started building our robots turned out to be misguided. Some issues we thought would be hard have worked successfully from day one and subsystems we imagined to be trivial have become tremendous time sinks. Oddly enough, one of our biggest failures has led to some of our favorite successes. This paper describes the changing paths our research has taken due to the lessons learned from the practical realities of building robots.
Resumo:
Redundant sensors are needed on a mobile robot so that the accuracy with which it perceives its surroundings can be increased. Sonar and infrared sensors are used here in tandem, each compensating for deficiencies in the other. The robot combines the data from both sensors to build a representation which is more accurate than if either sensor were used alone. Another representation, the curvature primal sketch, is extracted from this perceived workspace and is used as the input to two path planning programs: one based on configuration space and one based on a generalized cone formulation of free space.