2 resultados para mirror

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baylis & Driver (Nature Neuroscience, 2001) have recently presented data on the response of neurons in macaque inferotemporal cortex (IT) to various stimulus transformations. They report that neurons can generalize over contrast and mirror reversal, but not over figure-ground reversal. This finding is taken to demonstrate that ``the selectivity of IT neurons is not determined simply by the distinctive contours in a display, contrary to simple edge-based models of shape recognition'', citing our recently presented model of object recognition in cortex (Riesenhuber & Poggio, Nature Neuroscience, 1999). In this memo, I show that the main effects of the experiment can be obtained by performing the appropriate simulations in our simple feedforward model. This suggests for IT cell tuning that the possible contributions of explicit edge assignment processes postulated in (Baylis & Driver, 2001) might be smaller than expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.