1 resultado para microprocessor-based control
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (12)
- Archive of European Integration (1)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (89)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (28)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (59)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (74)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (14)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (11)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (30)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (32)
- Scielo España (1)
- Scielo Saúde Pública - SP (79)
- Universidad de Alicante (10)
- Universidad Politécnica de Madrid (39)
- Universidade do Minho (20)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (145)
- Université de Montréal, Canada (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (63)
- University of Washington (1)
Resumo:
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.