2 resultados para microgravity fluid physics
em Massachusetts Institute of Technology
Resumo:
We have simulated the behavior of several artificial flies, interacting visually with each other. Each fly is described by a simple tracking system (Poggio and Reichardt, 1973; Land and Collett, 1974) which summarizes behavioral experiments in which individual flies fixate a target. Our main finding is that the interaction of theses implemodules gives rise to a variety of relatively complex behaviors. In particular, we observe a swarm-like behavior of a group of many artificial flies for certain reasonable ranges of our tracking system parameters.
Resumo:
In this paper, a new methodology for predicting fluid free surface shape using Model Order Reduction (MOR) is presented. Proper Orthogonal Decomposition combined with a linear interpolation procedure for its coefficient is applied to a problem involving bubble dynamics near to a free surface. A model is developed to accurately and efficiently capture the variation of the free surface shape with different bubble parameters. In addition, a systematic approach is developed within the MOR framework to find the best initial locations and pressures for a set of bubbles beneath the quiescent free surface such that the resultant free surface attained is close to a desired shape. Predictions of the free surface in two-dimensions and three-dimensions are presented.