10 resultados para micro enterprise
em Massachusetts Institute of Technology
Resumo:
This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance.
Resumo:
The Massachusetts Institute of Technology (MIT) submits this proposal for the Enterprise Value Phase of the Lean Aerospace Initiative (LAI) in response to the October 9, 2002 Request for Proposal (RFP) F33615-02-2-5501 from the Air Force Research Laboratory (AFRL/MLKT), Wright-Patterson Air Force Base, Ohio. This proposal addresses the conduct of the LAI as set forth in the Enterprise Value Phase Concept of Operations (final draft dated 5 June 2002. The creation of this Enterprise Value Phase Concept of Operations (ConOps) was the result of extensive interaction among all stakeholders in the LAI consortium. The proposed products and research topics have been developed by the MIT LAI team based on this extended interaction with the Lean Aerospace Initiative consortium members during the concept of operations development. This proposal is in consonance with the Enterprise Value Phase vision, and mission as set forth in the concept of operations so as to meet stakeholder needs to achieve the goals and deliverables desired, prioritized to fit available funding.
Resumo:
-Status report on June Executive Board commitments -Enterprise-level LESAT Beta Version -Detailed-level LESAT Development Plan -Industry and government participation and support requirements -Resource Needs -Executive Board decision on proposed next steps
Resumo:
PowerPoint presentation that showcases: • Research Objectives • Strategic Value of the Lean Enterprise • Multi-Stakeholder Value Optimization • Lean Enterprise Self-Assessment Tool (LESAT) • Leading and Lagging Indicators of Lean Enterprise Transformation • Empirical Results in the Aerospace Industry • Accelerating the Lean Transformation - Linking LESAT to Strategic Objectives • Summary and Questions
Resumo:
This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.
Resumo:
Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with pure FIB milling, 10:1 for gas assistant etching, and 1:1 for the hole with size below 100 nm. A phenomenon of volume swell at the boundary of the hole was observed. The reason maybe due to the dose dependence of the effective sputter yield in low intensity Gaussian beam tail regions and redeposition. Different materials were used to investigate variation of the aspect ratio. The results show that for some special material, such as Ni-Be, the corresponding aspect ratio can reach 13.8:1 with Cl₂ assistant etching, but only 0.09:1 for Si(100) with single scan of the FIB.
Resumo:
A novel process based on the principle of layered photolithography has been proposed and tested for making real three-dimensional micro-structures. An experimental setup was designed and built for doing experiments on this micro-fabrication process. An ultraviolet (UV) excimer laser at the wavelength of 248 nm was used as the light source and a single piece of photo-mask carrying a series of two dimensional (2D) patterns sliced from a three dimensional (3D) micro-part was employed for the photolithography process. The experiments were conducted on the solidification of liquid photopolymer from single layer to multiple layers. The single-layer photolithography experiments showed that certain photopolymers could be applied for the 3D micro-fabrication, and solid layers with sharp shapes could be formed from the liquid polymer identified. By using a unique alignment technique, multiple layers of photolithography was successfully realized for a micro-gear with features at 60 microns. Electroforming was also conducted for converting the photopolymer master to a metal cavity of the micro-gear, which proved that the process is feasible for micro-molding.
Resumo:
A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.
Resumo:
Lean is common sense and good business sense. As organizations grow and become more successful, they begin to lose insight into the basic truths of what made them successful. Organizations have to deal with more and more issues that may not have anything to do with directly providing products or services to their customers. Lean is a holistic management approach that brings the focus of the organization back to providing value to the customer. In August 2002, Mrs. Darleen Druyun, the Principal Deputy to the Assistant Secretary of the Air Force for Acquisition and government co-chairperson of the Lean Aerospace Initiative (LAI), decided it was time for Air Force acquisitions to embrace the concepts of lean. At her request, the LAI Executive Board developed a concept and methodology to employ lean into the Air Force’s acquisition culture and processes. This was the birth of the “Lean Now” initiative. An enterprise-wide approach was used, involving Air Force System Program Offices (SPOs), aerospace industry, and several Department of Defense agencies. The aim of Lean Now was to focus on the process interfaces between these “enterprise” stakeholders to eliminate barriers that impede progress. Any best practices developed would be institutionalized throughout the Air Force and the Department of Defense (DoD). The industry members of LAI agreed to help accelerate the government-industry transformation by donating lean Subject Matter Experts (SMEs) to mentor, train, and facilitate the lean events of each enterprise. Currently, the industry SMEs and the Massachusetts Institute of Technology are working together to help the Air Force develop its own lean infrastructure of training courses and Air Force lean SMEs. The first Lean Now programs were the F/A-22, Global Hawk, and F-16. Each program focused on specific acquisition processes. The F/A-22 focused on the Test and Evaluation process; the Global Hawk focused on Evolutionary Acquisitions; and the F-16 focused on improving the Contract Closeout process. Through lean, each enterprise made many significant improvements. The F/A-22 was able to reduce its Operational Flight Plan (OFP) Preparation and Load process time of 2 to 3 months down to 7 hours. The Global Hawk developed a new production plan that increases the annual production of its Integrated Sensor Suite from 3 per year to 6 per year. The F-16 enterprise generated and is working 12 initiatives that could result in a contract closeout cycle time reduction of 3 to 7 years. Each enterprise continues to generate more lean initiatives that focus on other areas and processes within their respective enterprises.
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
Resumo:
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.