3 resultados para metaphor.
em Massachusetts Institute of Technology
Resumo:
This thesis introduces elements of a theory of design activity and a computational framework for developing design systems. The theory stresses the opportunistic nature of designing and the complementary roles of focus and distraction, the interdependence of evaluation and generation, the multiplicity of ways of seeing over the history of a design session versus the exclusivity of a given way of seeing over an arbitrarily short period, and the incommensurability of criteria used to evaluate a design. The thesis argues for a principle based rather than rule based approach to designing documents. The Discursive Generator is presented as a computational framework for implementing specific design systems, and a simple system for arranging blocks according to a set of formal principles is developed by way of illustration. Both shape grammars and constraint based systems are used to contrast current trends in design automation with the discursive approach advocated in the thesis. The Discursive Generator is shown to have some important properties lacking in other types of systems, such as dynamism, robustness and the ability to deal with partial designs. When studied in terms of a search metaphor, the Discursive Generator is shown to exhibit behavior which is radically different from some traditional search techniques, and to avoid some of the well-known difficulties associated with them.
Resumo:
Linear graph reduction is a simple computational model in which the cost of naming things is explicitly represented. The key idea is the notion of "linearity". A name is linear if it is only used once, so with linear naming you cannot create more than one outstanding reference to an entity. As a result, linear naming is cheap to support and easy to reason about. Programs can be translated into the linear graph reduction model such that linear names in the program are implemented directly as linear names in the model. Nonlinear names are supported by constructing them out of linear names. The translation thus exposes those places where the program uses names in expensive, nonlinear ways. Two applications demonstrate the utility of using linear graph reduction: First, in the area of distributed computing, linear naming makes it easy to support cheap cross-network references and highly portable data structures, Linear naming also facilitates demand driven migration of tasks and data around the network without requiring explicit guidance from the programmer. Second, linear graph reduction reveals a new characterization of the phenomenon of state. Systems in which state appears are those which depend on certain -global- system properties. State is not a localizable phenomenon, which suggests that our usual object oriented metaphor for state is flawed.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.