15 resultados para metalexical knowledge

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explanation-based learning occurs when something useful is retained from an explanation, usually an account of how some particular problem can be solved given a sound theory. Many real-world explanations are not based on sound theory, however, and wrong things may be learned accidentally, as subsequent failures will likely demonstrate. In this paper, we describe ways to isolate the facts that cause failures, ways to explain why those facts cause problems, and ways to repair learning mistakes. In particular, our program learns to distinguish pails from cups after making a few mistakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report shows how knowledge about the visual world can be built into a shape representation in the form of a descriptive vocabulary making explicit the important geometrical relationships comprising objects' shapes. Two computational tools are offered: (1) Shapestokens are placed on a Scale-Space Blackboard, (2) Dimensionality-reduction captures deformation classes in configurations of tokens. Knowledge lies in the token types and deformation classes tailored to the constraints and regularities ofparticular shape worlds. A hierarchical shape vocabulary has been implemented supporting several later visual tasks in the two-dimensional shape domain of the dorsal fins of fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a knowledge-base system in which the information is stored in a network of small parallel processing elements ??de and link units ??ich are controlled by an external serial computer. This network is similar to the semantic network system of Quillian, but is much more tightly controlled. Such a network can perform certain critical deductions and searches very quickly; it avoids many of the problems of current systems, which must use complex heuristics to limit and guided their searches. It is argued (with examples) that the key operation in a knowledge-base system is the intersection of large explicit and semi-explicit sets. The parallel network system does this in a small, essentially constant number of cycles; a serial machine takes time proportional to the size of the sets, except in special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system for visual recognition is described, with implications for the general problem of representation of knowledge to assist control. The immediate objective is a computer system that will recognize objects in a visual scene, specifically hammers. The computer receives an array of light intensities from a device like a television camera. It is to locate and identify the hammer if one is present. The computer must produce from the numerical "sensory data" a symbolic description that constitutes its perception of the scene. Of primary concern is the control of the recognition process. Control decisions should be guided by the partial results obtained on the scene. If a hammer handle is observed this should suggest that the handle is part of a hammer and advise where to look for the hammer head. The particular knowledge that a handle has been found combines with general knowledge about hammers to influence the recognition process. This use of knowledge to direct control is denoted here by the term "active knowledge". A descriptive formalism is presented for visual knowledge which identifies the relationships relevant to the active use of the knowledge. A control structure is provided which can apply knowledge organized in this fashion actively to the processing of a given scene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates what knowledge is necessary to solve mechanics problems. A program NEWTON is described which understands and solves problems in mechanics mini-world of objects moving on surfaces. Facts and equations such as those given in mechanics text need to be represented. However, this is far from sufficient to solve problems. Human problem solvers rely on "common sense" and "qualitative" knowledge which the physics text tacitly assumes to be present. A mechanics problem solver must embody such knowledge. Quantitative knowledge given by equations and more qualitative common sense knowledge are the major research points exposited in this thesis. The major issue in solving problems is planning. Planning involves tentatively outlining a possible path to the solution without actually solving the problem. Such a plan needs to be constructed and debugged in the process of solving the problem. Envisionment, or qualitative simulation of the event, plays a central role in this planning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report investigates some techinques appropriate to representing the knowledge necessary for understanding a class of electronic machines -- radio receivers. A computational performance model - WATSON - is presented. WATSONs task is to isolate failures in radio receivers whose principles of operation have been appropriately described in his knowledge base. The thesis of the report is that hierarchically organized representational structures are essential to the understanding of complex mechanisms. Such structures lead not only to descriptions of machine operation at many levels of detail, but also offer a powerful means of organizing "specialist" knowledge for the repair of machines when they are broken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents a model of the knowledge a person has about the spatial structure of a large-scale environment: the "cognitive map". The functions of the cognitive map are to assimilate new information about the environment, to represent the current position, and to answer route-finding and relative-position problems. This model (called the TOUR model) analyzes the cognitive map in terms of symbolic descriptions of the environment and operations on those descriptions. Knowledge about a particular environment is represented in terms of route descriptions, a topological network of paths and places, multiple frames of reference for relative positions, dividing boundaries, and a structure of containing regions. The current position is described by the "You Are Here" pointer, which acts as a working memory and a focus of attention. Operations on the cognitive map are performed by inference rules which act to transfer information among different descriptions and the "You Are Here" pointer. The TOUR model shows how the particular descriptions chosen to represent spatial knowledge support assimilation of new information from local observations into the cognitive map, and how the cognitive map solves route-finding and relative-position problems. A central theme of this research is that the states of partial knowledge supported by a representation are responsible for its ability to function with limited information of computational resources. The representations in the TOUR model provide a rich collection of states of partial knowledge, and therefore exhibit flexible, "common-sense" behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report develops a conceptual framework in which to talk about mathematical knowledge. There are several broad categories of mathematical knowledge: results which contain the traditional logical aspects of mathematics; examples which contain illustrative material; and concepts which include formal and informal ideas, that is, definitions and heuristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.