19 resultados para mathematical programming
em Massachusetts Institute of Technology
Resumo:
Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.
Resumo:
The Design Patterns book [GOF95] presents 24 time-tested patterns that consistently appear in well-designed software systems. Each pattern is presented with a description of the design problem the pattern addresses, as well as sample implementation code and design considerations. This paper explores how the patterns from the "Gang of Four'', or "GOF'' book, as it is often called, appear when similar problems are addressed using a dynamic, higher-order, object-oriented programming language. Some of the patterns disappear -- that is, they are supported directly by language features, some patterns are simpler or have a different focus, and some are essentially unchanged.
Resumo:
This report presents a system for generating a stable, feasible, and reachable grasp of a polyhedral object. A set of contact points on the object is found that can result in a stable grasp; a feasible grasp is found in which the robot contacts the object at those contact points; and a path is constructed from the initial configuration of the robot to the stable, feasible final grasp configuration. The algorithm described in the report is designed for the Salisbury hand mounted on a Puma 560 arm, but a similar approach could be used to develop grasping systems for other robots.
Resumo:
A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.
Resumo:
This report develops a conceptual framework in which to talk about mathematical knowledge. There are several broad categories of mathematical knowledge: results which contain the traditional logical aspects of mathematics; examples which contain illustrative material; and concepts which include formal and informal ideas, that is, definitions and heuristics.
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.
Resumo:
The actor message-passing model of concurrent computation has inspired new ideas in the areas of knowledge-based systems, programming languages and their semantics, and computer systems architecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula, and out of the use of continuations to interpret imperative constructs within A-calculus. The mathematical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and Giuseppe Attardi. This thesis extends and unifies their work through the following observations. The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time. The most general ordering laws are in fact equivalent to an axiom of realizability in global time. Independence results suggest that some notion of global time is essential to any model of concurrent computation. Since nondeterministic concurrency is more fundamental than deterministic sequential computation, there may be no need to take fixed points in the underlying domain of a power domain. Power domains built from incomplete domains can solve the problem of providing a fixed point semantics for a class of nondeterministic programming languages in which a fair merge can be written. The event diagrams of Greif's behavioral semantics, augmented by Baker's pending events, form an incomplete domain. Its power domain is the semantic domain in which programs written in actor-based languages are assigned meanings. This denotational semantics is compatible with behavioral semantics. The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-based language. Altering the semantics slightly can falsify the locality laws. The locality laws thus constrain what counts as an actor semantics.
Resumo:
"The Structure and Interpretation of Computer Programs" is the entry-level subject in Computer Science at the Massachusetts Institute of Technology. It is required of all students at MIT who major in Electrical Engineering or in Computer Science, as one fourth of the "common core curriculum," which also includes two subjects on circuits and linear systems and a subject on the design of digital systems. We have been involved in the development of this subject since 1978, and we have taught this material in its present form since the fall of 1980 to approximately 600 students each year. Most of these students have had little or no prior formal training in computation, although most have played with computers a bit and a few have had extensive programming or hardware design experience. Our design of this introductory Computer Science subject reflects two major concerns. First we want to establish the idea that a computer language is not just a way of getting a computer to perform operations, but rather that it is a novel formal medium for expressing ideas about methodology. Thus, programs must be written for people to read, and only incidentally for machines to execute. Secondly, we believe that the essential material to be addressed by a subject at this level, is not the syntax of particular programming language constructs, nor clever algorithms for computing particular functions of efficiently, not even the mathematical analysis of algorithms and the foundations of computing, but rather the techniques used to control the intellectual complexity of large software systems.
Resumo:
Computational models are arising is which programs are constructed by specifying large networks of very simple computational devices. Although such models can potentially make use of a massive amount of concurrency, their usefulness as a programming model for the design of complex systems will ultimately be decided by the ease in which such networks can be programmed (constructed). This thesis outlines a language for specifying computational networks. The language (AFL-1) consists of a set of primitives, ad a mechanism to group these elements into higher level structures. An implementation of this language runs on the Thinking Machines Corporation, Connection machine. Two significant examples were programmed in the language, an expert system (CIS), and a planning system (AFPLAN). These systems are explained and analyzed in terms of how they compare with similar systems written in conventional languages.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.
Resumo:
Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.