6 resultados para mannequins (figures)
em Massachusetts Institute of Technology
Resumo:
Binocular rivalry refers to the alternating perceptions experienced when two dissimilar patterns are stereoscopically viewed. To study the neural mechanism that underlies such competitive interactions, single cells were recorded in the visual areas V1, V2, and V4, while monkeys reported the perceived orientation of rivaling sinusoidal grating patterns. A number of neurons in all areas showed alternating periods of excitation and inhibition that correlated with the perceptual dominance and suppression of the cell"s preferred orientation. The remaining population of cells were not influenced by whether or not the optimal stimulus orientation was perceptually suppressed. Response modulation during rivalry was not correlated with cell attributes such as monocularity, binocularity, or disparity tuning. These results suggest that the awareness of a visual pattern during binocular rivalry arises through interactions between neurons at different levels of visual pathways, and that the site of suppression is unlikely to correspond to a particular visual area, as often hypothesized on the basis of psychophysical observations. The cell-types of modulating neurons and their overwhelming preponderance in higher rather than in early visual areas also suggests -- together with earlier psychophysical evidence -- the possibility of a common mechanism underlying rivalry as well as other bistable percepts, such as those experienced with ambiguous figures.
Resumo:
Example-based methods are effective for parameter estimation problems when the underlying system is simple or the dimensionality of the input is low. For complex and high-dimensional problems such as pose estimation, the number of required examples and the computational complexity rapidly becme prohibitively high. We introduce a new algorithm that learns a set of hashing functions that efficiently index examples relevant to a particular estimation task. Our algorithm extends a recently developed method for locality-sensitive hashing, which finds approximate neighbors in time sublinear in the number of examples. This method depends critically on the choice of hash functions; we show how to find the set of hash functions that are optimally relevant to a particular estimation problem. Experiments demonstrate that the resulting algorithm, which we call Parameter-Sensitive Hashing, can rapidly and accurately estimate the articulated pose of human figures from a large database of example images.
Resumo:
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
Resumo:
A study is made of the recognition and transformation of figures by iterative arrays of finite state automata. A figure is a finite rectangular two-dimensional array of symbols. The iterative arrays considered are also finite, rectangular, and two-dimensional. The automata comprising any given array are called cells and are assumed to be isomorphic and to operate synchronously with the state of a cell at time t+1 being a function of the states of it and its four nearest neighbors at time t. At time t=0 each cell is placed in one of a fixed number of initial states. The pattern of initial states thus introduced represents the figure to be processed. The resulting sequence of array states represents a computation based on the input figure. If one waits for a specially designated cell to indicate acceptance or rejection of the figure, the array is said to be working on a recognition problem. If one waits for the array to come to a stable configuration representing an output figure, the array is said to be working on a transformation problem.
Resumo:
An investigation is made into the problem of constructing a model of the appearance to an optical input device of scenes consisting of plane-faced geometric solids. The goal is to study algorithms which find the real straight edges in the scenes, taking into account smooth variations in intensity over faces of the solids, blurring of edges and noise. A general mathematical analysis is made of optimal methods for identifying the edge lines in figures, given a raster of intensities covering the entire field of view. There is given in addition a suboptimal statistical decision procedure, based on the model, for the identification of a line within a narrow band on the field of view given an array of intensities from within the band. A computer program has been written and extensively tested which implements this procedure and extracts lines from real scenes. Other programs were written which judge the completeness of extracted sets of lines, and propose and test for additional lines which had escaped initial detection. The performance of these programs is discussed in relation to the theory derived from the model, and with regard to their use of global information in detecting and proposing lines.
Resumo:
A computer may gather a lot of information from its environment in an optical or graphical manner. A scene, as seen for instance from a TV camera or a picture, can be transformed into a symbolic description of points and lines or surfaces. This thesis describes several programs, written in the language CONVERT, for the analysis of such descriptions in order to recognize, differentiate and identify desired objects or classes of objects in the scene. Examples are given in each case. Although the recognition might be in terms of projections of 2-dim and 3-dim objects, we do not deal with stereoscopic information. One of our programs (Polybrick) identifies parallelepipeds in a scene which may contain partially hidden bodies and non-parallelepipedic objects. The program TD works mainly with 2-dimensional figures, although under certain conditions successfully identifies 3-dim objects. Overlapping objects are identified when they are transparent. A third program, DT, works with 3-dim and 2-dim objects, and does not identify objects which are not completely seen. Important restrictions and suppositions are: (a) the input is assumed perfect (noiseless), and in a symbolic format; (b) no perspective deformation is considered. A portion of this thesis is devoted to the study of models (symbolic representations) of the objects we want to identify; different schemes, some of them already in use, are discussed. Focusing our attention on the more general problem of identification of general objects when they substantially overlap, we propose some schemes for their recognition, and also analyze some problems that are met.