4 resultados para load securing net

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is concerned with the development of tactual displays to supplement the information available through lipreading. Because voicing carries a high informational load in speech and is not well transmitted through lipreading, the efforts are focused on providing tactual displays of voicing to supplement the information available on the lips of the talker. This research includes exploration of 1) signal-processing schemes to extract information about voicing from the acoustic speech signal, 2) methods of displaying this information through a multi-finger tactual display, and 3) perceptual evaluations of voicing reception through the tactual display alone (T), lipreading alone (L), and the combined condition (L+T). Signal processing for the extraction of voicing information used amplitude-envelope signals derived from filtered bands of speech (i.e., envelopes derived from a lowpass-filtered band at 350 Hz and from a highpass-filtered band at 3000 Hz). Acoustic measurements made on the envelope signals of a set of 16 initial consonants represented through multiple tokens of C1VC2 syllables indicate that the onset-timing difference between the low- and high-frequency envelopes (EOA: envelope-onset asynchrony) provides a reliable and robust cue for distinguishing voiced from voiceless consonants. This acoustic cue was presented through a two-finger tactual display such that the envelope of the high-frequency band was used to modulate a 250-Hz carrier signal delivered to the index finger (250-I) and the envelope of the low-frequency band was used to modulate a 50-Hz carrier delivered to the thumb (50T). The temporal-onset order threshold for these two signals, measured with roving signal amplitude and duration, averaged 34 msec, sufficiently small for use of the EOA cue. Perceptual evaluations of the tactual display of EOA with speech signal indicated: 1) that the cue was highly effective for discrimination of pairs of voicing contrasts; 2) that the identification of 16 consonants was improved by roughly 15 percentage points with the addition of the tactual cue over L alone; and 3) that no improvements in L+T over L were observed for reception of words in sentences, indicating the need for further training on this task

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The buckling of compressively-loaded members is one of the most important factors limiting the overall strength and stability of a structure. I have developed novel techniques for using active control to wiggle a structural element in such a way that buckling is prevented. I present the results of analysis, simulation, and experimentation to show that buckling can be prevented through computer-controlled adjustment of dynamical behavior.sI have constructed a small-scale railroad-style truss bridge that contains compressive members that actively resist buckling through the use of piezo-electric actuators. I have also constructed a prototype actively controlled column in which the control forces are applied by tendons, as well as a composite steel column that incorporates piezo-ceramic actuators that are used to counteract buckling. Active control of buckling allows this composite column to support 5.6 times more load than would otherwise be possible.sThese techniques promise to lead to intelligent physical structures that are both stronger and lighter than would otherwise be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.