9 resultados para learning to program
em Massachusetts Institute of Technology
Resumo:
We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.
Resumo:
This white paper reports emerging findings at the end of Phase I of the Lean Aircraft Initiative in the Policy focus group area. Specifically, it provides details about research on program instability. Its objective is to discuss high-level findings detailing: 1) the relative contribution of different factors to a program’s overall instability; 2) the cost impact of program instability on acquisition programs; and 3) some strategies recommended by program managers for overcoming and/or mitigating the negative effects of program instability on their programs. Because this report comes as this research is underway, this is not meant to be a definitive document on the subject. Rather, is it anticipated that this research may potentially produce a number of reports on program instability-related topics. The government managers of military acquisition programs rated annual budget or production rate changes, changes in requirements, and technical difficulties as the three top contributors, respectively, to program instability. When asked to partition actual variance in their program’s planned cost and schedule to each of these factors, it was found that the combined effects of unplanned budget and requirement changes accounted for 5.2% annual cost growth and 20% total program schedule slip. At a rate of approximately 5% annual cost growth from these factors, it is easy to see that even conservative estimates of the cost benefits to be gained from acquisition reforms and process improvements can quickly be eclipsed by the added cost associated with program instability. Program management practices involving the integration of stakeholders from throughout the value chain into the decision making process were rated the most effective at avoiding program instability. The use of advanced information technologies was rated the most effective at mitigating the negative impact of program instability.
Resumo:
This white paper reports emerging findings at the end of Phase I of the Lean Aircraft Initiative in the Policy focus group area. Specifically, it provides details about research on program instability. Its objective is to discuss high-level findings detailing: 1) the relative contribution of different factors to a program’s overall instability; 2) the cost impact of program instability on acquisition programs; and 3) some strategies recommended by program managers for overcoming and/or mitigating the negative effects of program instability on their programs. Because this report comes as this research is underway, this is not meant to be a definitive document on the subject. Rather, is it anticipated that this research may potentially produce a number of reports on program instability-related topics. The government managers of military acquisition programs rated annual budget or production rate changes, changes in requirements, and technical difficulties as the three top contributors, respectively, to program instability. When asked to partition actual variance in their program’s planned cost and schedule to each of these factors, it was found that the combined effects of unplanned budget and requirement changes accounted for 5.2% annual cost growth and 20% total program schedule slip. At a rate of approximately 5% annual cost growth from these factors, it is easy to see that even conservative estimates of the cost benefits to be gained from acquisition reforms and process improvements can quickly be eclipsed by the added cost associated with program instability. Program management practices involving the integration of stakeholders from throughout the value chain into the decision making process were rated the most effective at avoiding program instability. The use of advanced information technologies was rated the most effective at mitigating the negative impact of program instability.
Resumo:
Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.
Resumo:
A new information-theoretic approach is presented for finding the pose of an object in an image. The technique does not require information about the surface properties of the object, besides its shape, and is robust with respect to variations of illumination. In our derivation, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used in a wide variety of imaging situations. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with computed tomography (CT) images, aligning a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 2D object model to real images. The method is based on a formulation of the mutual information between the model and the image called EMMA. As applied here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Finally, we will describe a number of additional real-world applications that can be solved efficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally informative projections of high-dimensional data. EMMA can also be used to detect and correct corruption in magnetic resonance images (MRI).
Resumo:
Autonomous vehicles are increasingly being used in mission-critical applications, and robust methods are needed for controlling these inherently unreliable and complex systems. This thesis advocates the use of model-based programming, which allows mission designers to program autonomous missions at the level of a coach or wing commander. To support such a system, this thesis presents the Spock generative planner. To generate plans, Spock must be able to piece together vehicle commands and team tactics that have a complex behavior represented by concurrent processes. This is in contrast to traditional planners, whose operators represent simple atomic or durative actions. Spock represents operators using the RMPL language, which describes behaviors using parallel and sequential compositions of state and activity episodes. RMPL is useful for controlling mobile autonomous missions because it allows mission designers to quickly encode expressive activity models using object-oriented design methods and an intuitive set of activity combinators. Spock also is significant in that it uniformly represents operators and plan-space processes in terms of Temporal Plan Networks, which support temporal flexibility for robust plan execution. Finally, Spock is implemented as a forward progression optimal planner that walks monotonically forward through plan processes, closing any open conditions and resolving any conflicts. This thesis describes the Spock algorithm in detail, along with example problems and test results.
Resumo:
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.