5 resultados para learning by discovering

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the rise of the industrial revolution, there are few challenges that compare in scale and scope with the challenge of implementing lean principles in order to achieve high performance work systems. This report summarize key insights and learning by representatives from a cross section of organizations who are on this journey. Specifically, we report on findings from the first Lean Aircraft Initiative (LAI) Implementation Workshop, which was held on February 5-6, 1997.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the rise of the industrial revolution, there are few challenges that compare in scale and scope with the challenge of implementing lean principles in order to achieve high performance work systems. This report summarize key insights and learning by representatives from a cross section of organizations who are on this journey. Specifically, we report on findings from the first Lean Aircraft Initiative (LAI) Implementation Workshop, which was held on February 5-6, 1997. The report is not a “cookbook” or a “how to” manual. Rather, it is a summary of the first phase in a learning process. It is designed to codify lessons learning, facilitate diffusion among people not at the session, and set the stage for further learning about implementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a system that learns from examples to recognize people in images taken indoors. Images of people are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector Machine classifiers (SVMs). Different types of multiclass strategies based on SVMs are explored and compared to k-Nearest Neighbors classifiers (kNNs). The system works in real time and shows high performance rates for people recognition throughout one day.