4 resultados para language for specific purpose

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

What are the characteristics of the process by which an intent is transformed into a plan and then a program? How is a program debugged? This paper analyzes these questions in the context of understanding simple turtle programs. To understand and debug a program, a description of its intent is required. For turtle programs, this is a model of the desired geometric picture. a picture language is provided for this purpose. Annotation is necessary for documenting the performance of a program in such a way that the system can examine the procedures behavior as well as consider hypothetical lines of development due to tentative debugging edits. A descriptive framework representing both causality and teleology is developed. To understand the relation between program and model, the plan must be known. The plan is a description of the methodology for accomplishing the model. Concepts are explicated for translating the global intent of a declarative model into the local imperative code of a program. Given the plan, model and program, the system can interpret the picture and recognize inconsistencies. The description of the discrepancies between the picture actually produced by the program and the intended scene is the input to a debugging system. Repair of the program is based on a combination of general debugging techniques and specific fixing knowledge associated with the geometric model primitives. In both the plan and repairing the bugs, the system exhibits an interesting style of analysis. It is capable of debugging itself and reformulating its analysis of a plan or bug in response to self-criticism. In this fashion, it can qualitatively reformulate its theory of the program or error to account for surprises or anomalies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of language change. Linguists must explain not only how languages are learned but also how and why they have evolved along certain trajectories and not others. While the language learning problem has focused on the behavior of individuals and how they acquire a particular grammar from a class of grammars ${cal G}$, here we consider a population of such learners and investigate the emergent, global population characteristics of linguistic communities over several generations. We argue that language change follows logically from specific assumptions about grammatical theories and learning paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic composition. We investigate the linguistic and computational consequences of this model, showing that the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as the effect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic perspective, we give an example of how the dynamical system model for language change can serve as a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy criterion for linguistic theories.