6 resultados para lambda-carrageenan
em Massachusetts Institute of Technology
Resumo:
Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. We derive an optimal filter for edge detection with a size controlled by the regularization parameter $\\ lambda $ and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter $\\lambda $ is derived from regularization analysis for the case of small values of $\\lambda$. We also discuss the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, we use our framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.
Resumo:
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
Resumo:
Data and procedures and the values they amass, Higher-order functions to combine and mix and match, Objects with their local state, the message they pass, A property, a package, the control of point for a catch- In the Lambda Order they are all first-class. One thing to name them all, one things to define them, one thing to place them in environments and bind them, in the Lambda Order they are all first-class. Keywords: Scheme, Lisp, functional programming, computer languages.
Resumo:
We have developed a compiler for the lexically-scoped dialect of LISP known as SCHEME. The compiler knows relatively little about specific data manipulation primitives such as arithmetic operators, but concentrates on general issues of environment and control. Rather than having specialized knowledge about a large variety of control and environment constructs, the compiler handles only a small basis set which reflects the semantics of lambda-calculus. All of the traditional imperative constructs, such as sequencing, assignment, looping, GOTO, as well as many standard LISP constructs such as AND, OR, and COND, are expressed in macros in terms of the applicative basis set. A small number of optimization techniques, coupled with the treatment of function calls as GOTO statements, serve to produce code as good as that produced by more traditional compilers. The macro approach enables speedy implementation of new constructs as desired without sacrificing efficiency in the generated code. A fair amount of analysis is devoted to determining whether environments may be stack-allocated or must be heap-allocated. Heap-allocated environments are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for example) allows procedures with free lexically scoped variables to be returned as the values of other procedures; the Algol stack-allocation environment strategy does not suffice. The methods used here indicate that a heap-allocating generalization of the "display" technique leads to an efficient implementation of such "upward funargs". Moreover, compile-time optimization and analysis can eliminate many "funargs" entirely, and so far fewer environment structures need be allocated at run time than might be expected. A subset of SCHEME (rather than triples, for example) serves as the representation intermediate between the optimized SCHEME code and the final output code; code is expressed in this subset in the so-called continuation-passing style. As a subset of SCHEME, it enjoys the same theoretical properties; one could even apply the same optimizer used on the input code to the intermediate code. However, the subset is so chosen that all temporary quantities are made manifest as variables, and no control stack is needed to evaluate it. As a result, this apparently applicative representation admits an imperative interpretation which permits easy transcription to final imperative machine code. These qualities suggest that an applicative language like SCHEME is a better candidate for an UNCOL than the more imperative candidates proposed to date.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.