1 resultado para kraft lignin derivative
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Bibloteca do Senado Federal do Brasil (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (17)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (62)
- Cochin University of Science & Technology (CUSAT), India (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (15)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (70)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (15)
- Publishing Network for Geoscientific & Environmental Data (20)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (300)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (102)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (6)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (35)
- University of Queensland eSpace - Australia (7)
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.