4 resultados para knowledge paradigms
em Massachusetts Institute of Technology
Resumo:
Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases.
Resumo:
All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development.
Resumo:
The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.
Resumo:
If we are to understand how we can build machines capable of broad purpose learning and reasoning, we must first aim to build systems that can represent, acquire, and reason about the kinds of commonsense knowledge that we humans have about the world. This endeavor suggests steps such as identifying the kinds of knowledge people commonly have about the world, constructing suitable knowledge representations, and exploring the mechanisms that people use to make judgments about the everyday world. In this work, I contribute to these goals by proposing an architecture for a system that can learn commonsense knowledge about the properties and behavior of objects in the world. The architecture described here augments previous machine learning systems in four ways: (1) it relies on a seven dimensional notion of context, built from information recently given to the system, to learn and reason about objects' properties; (2) it has multiple methods that it can use to reason about objects, so that when one method fails, it can fall back on others; (3) it illustrates the usefulness of reasoning about objects by thinking about their similarity to other, better known objects, and by inferring properties of objects from the categories that they belong to; and (4) it represents an attempt to build an autonomous learner and reasoner, that sets its own goals for learning about the world and deduces new facts by reflecting on its acquired knowledge. This thesis describes this architecture, as well as a first implementation, that can learn from sentences such as ``A blue bird flew to the tree'' and ``The small bird flew to the cage'' that birds can fly. One of the main contributions of this work lies in suggesting a further set of salient ideas about how we can build broader purpose commonsense artificial learners and reasoners.