1 resultado para interstellar clouds
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (16)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (22)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (240)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (18)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (57)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (179)
- Queensland University of Technology - ePrints Archive (47)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (8)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (28)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.