2 resultados para in-class test

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Array technologies have made it possible to record simultaneously the expression pattern of thousands of genes. A fundamental problem in the analysis of gene expression data is the identification of highly relevant genes that either discriminate between phenotypic labels or are important with respect to the cellular process studied in the experiment: for example cell cycle or heat shock in yeast experiments, chemical or genetic perturbations of mammalian cell lines, and genes involved in class discovery for human tumors. In this paper we focus on the task of unsupervised gene selection. The problem of selecting a small subset of genes is particularly challenging as the datasets involved are typically characterized by a very small sample size ?? the order of few tens of tissue samples ??d by a very large feature space as the number of genes tend to be in the high thousands. We propose a model independent approach which scores candidate gene selections using spectral properties of the candidate affinity matrix. The algorithm is very straightforward to implement yet contains a number of remarkable properties which guarantee consistent sparse selections. To illustrate the value of our approach we applied our algorithm on five different datasets. The first consists of time course data from four well studied Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937). The other four datasets include three well studied treatment outcomes (large cell lymphoma, childhood medulloblastomas, breast tumors) and one unpublished dataset (lymph status). We compared our approach both with other unsupervised methods (SOM,PCA,GS) and with supervised methods (SNR,RMB,RFE). The results clearly show that our approach considerably outperforms all the other unsupervised approaches in our study, is competitive with supervised methods and in some case even outperforms supervised approaches.