2 resultados para hypertonic solution
em Massachusetts Institute of Technology
Resumo:
In this thesis we study the general problem of reconstructing a function, defined on a finite lattice from a set of incomplete, noisy and/or ambiguous observations. The goal of this work is to demonstrate the generality and practical value of a probabilistic (in particular, Bayesian) approach to this problem, particularly in the context of Computer Vision. In this approach, the prior knowledge about the solution is expressed in the form of a Gibbsian probability distribution on the space of all possible functions, so that the reconstruction task is formulated as an estimation problem. Our main contributions are the following: (1) We introduce the use of specific error criteria for the design of the optimal Bayesian estimators for several classes of problems, and propose a general (Monte Carlo) procedure for approximating them. This new approach leads to a substantial improvement over the existing schemes, both regarding the quality of the results (particularly for low signal to noise ratios) and the computational efficiency. (2) We apply the Bayesian appraoch to the solution of several problems, some of which are formulated and solved in these terms for the first time. Specifically, these applications are: teh reconstruction of piecewise constant surfaces from sparse and noisy observationsl; the reconstruction of depth from stereoscopic pairs of images and the formation of perceptual clusters. (3) For each one of these applications, we develop fast, deterministic algorithms that approximate the optimal estimators, and illustrate their performance on both synthetic and real data. (4) We propose a new method, based on the analysis of the residual process, for estimating the parameters of the probabilistic models directly from the noisy observations. This scheme leads to an algorithm, which has no free parameters, for the restoration of piecewise uniform images. (5) We analyze the implementation of the algorithms that we develop in non-conventional hardware, such as massively parallel digital machines, and analog and hybrid networks.
Resumo:
How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.