5 resultados para high linear

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced techniques that are applicable under restricted conditions but simpler. The approach exploits image transformations that are specific to the relevant object class and learnable from example views of other "prototypical" objects of the same class. In this paper, we introduce such a new technique by extending the notion of linear class first proposed by Poggio and Vetter. For linear object classes it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively "rotate" high- resolution face images from a single 2D view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector--a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection. In some domains (such as vision) dimensionality reduction reduces computational complexity. In text retrieval it is more often used to improve retrieval performance. We propose an alternative and novel technique that produces sparse representations constructed from sets of highly-related words. Documents and queries are represented by their distance to these sets. and relevance is measured by the number of common clusters. This technique significantly improves retrieval performance, is efficient to compute and shares properties with the optimal linear projection operator and the independent components of documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chow and Liu introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density model that assumes that there are only pairwise dependencies between variables) and that the graph of these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain, and linear in the number of data points that define the target distribution $P$. This paper shows that for sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm, takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.