6 resultados para hierarchies
em Massachusetts Institute of Technology
Resumo:
This paper describes a theory of inheritance theories. We present an original theory of inheritance in nonmonotonic hierarchies. The structures on which this theory is based delineate a framework that subsumes most inheritance theories in the literature, providing a new foundation for inheritance. * Our path-based theory is sound and complete w.r.t. a direct model-theoretic semantics. * Both the credulous and the skeptical conclusions of this theory are polynomial-time computable. * We prove that true skeptical inheritance is not contained in the language of path-based inheritance. Because our techniques are modular w.r.t. the definition of specificity, they generalize to provide a unified framework for a broad class of inheritance theories. By describing multiple inheritance theories in the same "language" of credulous extensions, we make principled comparisons rather than the ad-hoc examination of specific examples makes up most of the comparative inheritance work.
Resumo:
Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.
Resumo:
Recent developments in microfabrication and nanotechnology will enable the inexpensive manufacturing of massive numbers of tiny computing elements with sensors and actuators. New programming paradigms are required for obtaining organized and coherent behavior from the cooperation of large numbers of unreliable processing elements that are interconnected in unknown, irregular, and possibly time-varying ways. Amorphous computing is the study of developing and programming such ultrascale computing environments. This paper presents an approach to programming an amorphous computer by spontaneously organizing an unstructured collection of processing elements into cooperative groups and hierarchies. This paper introduces a structure called an AC Hierarchy, which logically organizes processors into groups at different levels of granularity. The AC hierarchy simplifies programming of an amorphous computer through new language abstractions, facilitates the design of efficient and robust algorithms, and simplifies the analysis of their performance. Several example applications are presented that greatly benefit from the AC hierarchy. This paper introduces three algorithms for constructing multiple levels of the hierarchy from an unstructured collection of processors.
Resumo:
For a very large network deployed in space with only nearby nodes able to talk to each other, we want to do tasks like robust routing and data storage. One way to organize the network is via a hierarchy, but hierarchies often have a few critical nodes whose death can disrupt organization over long distances. I address this with a system of distributed aggregates called Persistent Nodes, such that spatially local failures disrupt the hierarchy in an area proportional to the diameter of the failure. I describe and analyze this system, which has been implemented in simulation.
Resumo:
This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.
Resumo:
This thesis describes a methodology, a representation, and an implemented program for troubleshooting digital circuit boards at roughly the level of expertise one might expect in a human novice. Existing methods for model-based troubleshooting have not scaled up to deal with complex circuits, in part because traditional circuit models do not explicitly represent aspects of the device that troubleshooters would consider important. For complex devices the model of the target device should be constructed with the goal of troubleshooting explicitly in mind. Given that methodology, the principal contributions of the thesis are ways of representing complex circuits to help make troubleshooting feasible. Temporally coarse behavior descriptions are a particularly powerful simplification. Instantiating this idea for the circuit domain produces a vocabulary for describing digital signals. The vocabulary has a level of temporal detail sufficient to make useful predictions abut the response of the circuit while it remains coarse enough to make those predictions computationally tractable. Other contributions are principles for using these representations. Although not embodied in a program, these principles are sufficiently concrete that models can be constructed manually from existing circuit descriptions such as schematics, part specifications, and state diagrams. One such principle is that if there are components with particularly likely failure modes or failure modes in which their behavior is drastically simplified, this knowledge should be incorporated into the model. Further contributions include the solution of technical problems resulting from the use of explicit temporal representations and design descriptions with tangled hierarchies.