3 resultados para head movement

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serial-link manipulator may form a mobile closed kinematic chain when interacting with the environment, if it is redundant with respect to the task degrees of freedom (DOFs) at the endpoint. If the mobile closed chain assumes a number of configurations, then loop consistency equations permit the manipulator and task kinematics to be calibrated simultaneously using only the joint angle readings; endpoint sensing is not required. Example tasks include a fixed endpoint (0 DOF task), the opening of a door (1 DOF task), and point contact (3 DOF task). Identifiability conditions are derived for these various tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.