3 resultados para graphic computation
em Massachusetts Institute of Technology
Resumo:
A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.
Resumo:
This thesis takes an interdisciplinary approach to the study of color vision, focussing on the phenomenon of color constancy formulated as a computational problem. The primary contributions of the thesis are (1) the demonstration of a formal framework for lightness algorithms; (2) the derivation of a new lightness algorithm based on regularization theory; (3) the synthesis of an adaptive lightness algorithm using "learning" techniques; (4) the development of an image segmentation algorithm that uses luminance and color information to mark material boundaries; and (5) an experimental investigation into the cues that human observers use to judge the color of the illuminant. Other computational approaches to color are reviewed and some of their links to psychophysics and physiology are explored.
Resumo:
The dataflow model of computation exposes and exploits parallelism in programs without requiring programmer annotation; however, instruction- level dataflow is too fine-grained to be efficient on general-purpose processors. A popular solution is to develop a "hybrid'' model of computation where regions of dataflow graphs are combined into sequential blocks of code. I have implemented such a system to allow the J-Machine to run Id programs, leaving exposed a high amount of parallelism --- such as among loop iterations. I describe this system and provide an analysis of its strengths and weaknesses and those of the J-Machine, along with ideas for improvement.