5 resultados para gas dissolution-release

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The release of growth factors from tissue engineering scaffolds provides signals that influence the migration, differentiation, and proliferation of cells. The incorporation of a drug delivery platform that is capable of tunable release will give tissue engineers greater versatility in the direction of tissue regeneration. We have prepared a novel composite of two biomaterials with proven track records - apatite and poly(lactic-co-glycolic acid) (PLGA) – as a drug delivery platform with promising controlled release properties. These composites have been tested in the delivery of a model protein, bovine serum albumin (BSA), as well as therapeutic proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and rhBMP-6. The controlled release strategy is based on the use of a polymer with acidic degradation products to control the dissolution of the basic apatitic component, resulting in protein release. Therefore, any parameter that affects either polymer degradation or apatite dissolution can be used to control protein release. We have modified the protein release profile systematically by varying the polymer molecular weight, polymer hydrophobicity, apatite loading, apatite particle size, and other material and processing parameters. Biologically active rhBMP-2 was released from these composite microparticles over 100 days, in contrast to conventional collagen sponge carriers, which were depleted in approximately 2 weeks. The released rhBMP-2 was able to induce elevated alkaline phosphatase and osteocalcin expression in pluripotent murine embryonic fibroblasts. To augment tissue engineering scaffolds with tunable and sustained protein release capabilities, these composite microparticles can be dispersed in the scaffolds in different combinations to obtain a superposition of the release profiles. We have loaded rhBMP-2 into composite microparticles with a fast release profile, and rhBMP-6 into slow-releasing composite microparticles. An equi-mixture of these two sets of composite particles was then injected into a collagen sponge, allowing for dual release of the proteins from the collagenous scaffold. The ability of these BMP-loaded scaffolds to induce osteoblastic differentiation in vitro and ectopic bone formation in a rat model is being investigated. We anticipate that these apatite-polymer composite microparticles can be extended to the delivery of other signalling molecules, and can be incorporated into other types of tissue engineering scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BALB/c nude mice 6 weeks old were inoculated with glioma C6 cell-line and the efficacy of the different amount of Etanidazole-discs and Taxol-microspheres was investigated. Poly (D,L-lactic-co-glycolic acid) (PLGA) was used as the main encapsulating polymer and polyethylene glycol was added to increase the porosity. The 1% drug loading microspheres of each drug were produced by spray drying and the discs were obtained by compressing the Etanidazole-microspheres. Intra-tumoral injection followed by irradiation resulted in high systemic dosage and thus systemic toxicity. Tumors grown for 6 days, 9 days and 16 days were implanted with 0.5 mg or 1.0 mg or 1.5 mg of the drug. A radiation dosage of 2 Gy each time for a number of times was given for animals implanted with Etanidazole and no irradiation was given for animals implanted with Taxol. Increasing the number of doses clearly decreased the rate of tumor growth. The increase in the amount of drug on smaller sized tumors controlled the tumor better and there was agglomeration of the microspheres resulting in deviation of release profile of the drug as compared to the in vitro studies. It was observed that 1.0 mg of Taxol given to a tumor grown for 6 days was able to suppress the tumor for a total period of approximately two months and no tumor resurrection was observed during the second month.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major problems in the operations of mammalian cell bioreactors is the detrimental effect of gas sparging. Since the most convenient way to oxygenate any bioreactor is by gas sparging, this adverse effect has often been one of the limiting oxygen transport problems in both laboratory and industrial mammalian cell bioreactors. When one examines the literature on the effect of gas sparging on the death of mammalian cells, a great deal of confusions has been reported. It is not clear from the published literature as to the leading cause for gas-sparged related cell death. These confusions prevent the rational design and operations of mammalian cell bioreactors. In our laboratory, we have attempted to address this problem both fundamentally as well as attempt to obtain a general understanding on the adverse effect of gas sparging. Our analyses first examined the fluid shear associated with the various sections that the gas bubbles encounter during entrance, passage through the bioreactor and the final exit of the gas bubbles. Our analyses showed that the major damage of the mammalian cells by gas bubbles is due to the burst of the bubbles when exiting the bioreactor. It was also our hypothesis that the entrained cells in the liquid boundary layer of the gas bubble upon bursting is the major cause for cell death. We have corroborated this hypothesis by correlating the liquid entrainment with the cell death rate using results from our laboratory as well as other studies. Pluonic F-68, a weak surfactant, has routinely been used in laboratory and industrial bioreactors. In the past, the protective effect of Pluronic F-68 has never been shown as to why it is effective. In our research, we have data using microphotography which clearly demonstrated and corroborated our entrainment hypothesis is the major reason for the effectiveness of Pluronic F-68 in protecting the cells from gas-sparged related cell death.