5 resultados para fractionation and identification

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report demonstrates a UV-embossed polymeric chip for protein separation and identification by Capillary Isoelectric Focusing (CIEF) and Matrix Assisted Laser Desportion/Ionization Mass Spectrometry (MALDI-MS). The polymeric chip has been fabricated by UV-embossing technique with high throughput; the issues in the fabrication have been addressed. In order to achieve high sensitivity of mass detection, five different types of UV curable polymer have been used as sample support to perform protein ionization in Mass Spectrometry (MS); the best results is compared to PMMA, which was the commonly used plastic chip for biomolecular separation. Experimental results show that signal from polyester is 12 times better than that of PMMA in terms of detection sensitivity. Finally, polyester chip is utilized to carry out CIEF to separate proteins, followed by MS identification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An approach towards shape description, based on prototype modification and generalized cylinders, has been developed and applied to the object domains pottery and polyhedra: (1) A program describes and identifies pottery from vase outlines entered as lists of points. The descriptions have been modeled after descriptions by archeologists, with the result that identifications made by the program are remarkably consisten with those of the archeologists. It has been possible to quantify their shape descriptors, which are everyday terms in our language applied to many sorts of objects besides pottery, so that the resulting descriptions seem very natural. (2) New parsing strategies for polyhedra overcome some limitations of previous work. A special feature is that the processes of parsing and identification are carried out simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding how biological visual systems perform object recognition is one of the ultimate goals in computational neuroscience. Among the biological models of recognition the main distinctions are between feedforward and feedback and between object-centered and view-centered. From a computational viewpoint the different recognition tasks - for instance categorization and identification - are very similar, representing different trade-offs between specificity and invariance. Thus the different tasks do not strictly require different classes of models. The focus of the review is on feedforward, view-based models that are supported by psychophysical and physiological data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo ‘tag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.