2 resultados para financial systems
em Massachusetts Institute of Technology
Resumo:
Each player in the financial industry, each bank, stock exchange, government agency, or insurance company operates its own financial information system or systems. By its very nature, financial information, like the money that it represents, changes hands. Therefore the interoperation of financial information systems is the cornerstone of the financial services they support. E-services frameworks such as web services are an unprecedented opportunity for the flexible interoperation of financial systems. Naturally the critical economic role and the complexity of financial information led to the development of various standards. Yet standards alone are not the panacea: different groups of players use different standards or different interpretations of the same standard. We believe that the solution lies in the convergence of flexible E-services such as web-services and semantically rich meta-data as promised by the semantic Web; then a mediation architecture can be used for the documentation, identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous financial services. In this paper we illustrate the nature of the problem in the Electronic Bill Presentment and Payment (EBPP) industry and the viability of the solution we propose. We describe and analyze the integration of services using four different formats: the IFX, OFX and SWIFT standards, and an example proprietary format. To accomplish this integration we use the COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and receivers’ contexts in reference to a rich domain model or ontology for the description and resolution of semantic heterogeneity.
Resumo:
Nonlinear multivariate statistical techniques on fast computers offer the potential to capture more of the dynamics of the high dimensional, noisy systems underlying financial markets than traditional models, while making fewer restrictive assumptions. This thesis presents a collection of practical techniques to address important estimation and confidence issues for Radial Basis Function networks arising from such a data driven approach, including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data mining'' problem. Novel applications in the finance area are described, including customized, adaptive option pricing and stock price prediction.