1 resultado para field-effect sensor
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (24)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (28)
- Archive of European Integration (1)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (72)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- CentAUR: Central Archive University of Reading - UK (72)
- Cochin University of Science & Technology (CUSAT), India (22)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (55)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Commons - Michigan Tech (10)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (4)
- Diposit Digital de la UB - Universidade de Barcelona (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (13)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (5)
- Publishing Network for Geoscientific & Environmental Data (31)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (152)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Scielo Saúde Pública - SP (59)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (64)
- Universidade Complutense de Madrid (1)
- Universidade do Algarve (4)
- Universidade do Minho (7)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (14)
- Université de Lausanne, Switzerland (27)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (34)
- University of Washington (1)
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.