4 resultados para expressing negativity

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes ARLO, a representation language loosely modelled after Greiner and Lenant's RLL-1. ARLO is a structure-based representation language for describing structure-based representation languages, including itself. A given representation language is specified in ARLO by a collection of structures describing how its descriptions are interpreted, defaulted, and verified. This high level description is compiles into lisp code and ARLO structures whose interpretation fulfills the specified semantics of the representation. In addition, ARLO itself- as a representation language for expressing and compiling partial and complete language specifications- is described and interpreted in the same manner as the language it describes and implements. This self-description can be extended of modified to expand or alter the expressive power of ARLO's initial configuration. Languages which describe themselves like ARLO- provide powerful mediums for systems which perform automatic self-modification, optimization, debugging, or documentation. AI systems implemented in such a self-descriptive language can reflect on their own capabilities and limitations, applying general learning and problem solving strategies to enlarge or alleviate them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"The Structure and Interpretation of Computer Programs" is the entry-level subject in Computer Science at the Massachusetts Institute of Technology. It is required of all students at MIT who major in Electrical Engineering or in Computer Science, as one fourth of the "common core curriculum," which also includes two subjects on circuits and linear systems and a subject on the design of digital systems. We have been involved in the development of this subject since 1978, and we have taught this material in its present form since the fall of 1980 to approximately 600 students each year. Most of these students have had little or no prior formal training in computation, although most have played with computers a bit and a few have had extensive programming or hardware design experience. Our design of this introductory Computer Science subject reflects two major concerns. First we want to establish the idea that a computer language is not just a way of getting a computer to perform operations, but rather that it is a novel formal medium for expressing ideas about methodology. Thus, programs must be written for people to read, and only incidentally for machines to execute. Secondly, we believe that the essential material to be addressed by a subject at this level, is not the syntax of particular programming language constructs, nor clever algorithms for computing particular functions of efficiently, not even the mathematical analysis of algorithms and the foundations of computing, but rather the techniques used to control the intellectual complexity of large software systems.