3 resultados para electrical synapses

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study of hippocampal pyramidal neurons is described. This study is based on simulations using HIPPO, a program which simulates the somatic electrical activity of these cells. HIPPO is based on a) descriptions of eleven non-linear conductances that have been either reported for this class of cell in the literature or postulated in the present study, and b) an approximation of the electrotonic structure of the cell that is derived in this thesis, based on data for the linear properties of these cells. HIPPO is used a) to integrate empirical data from a variety of sources on the electrical characteristics of this type of cell, b) to investigate the functional significance of the various elements that underly the electrical behavior, and c) to provide a tool for the electrophysiologist to supplement direct observation of these cells and provide a method of testing speculations regarding parameters that are not accessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.