2 resultados para discriminate
em Massachusetts Institute of Technology
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.
Resumo:
Array technologies have made it possible to record simultaneously the expression pattern of thousands of genes. A fundamental problem in the analysis of gene expression data is the identification of highly relevant genes that either discriminate between phenotypic labels or are important with respect to the cellular process studied in the experiment: for example cell cycle or heat shock in yeast experiments, chemical or genetic perturbations of mammalian cell lines, and genes involved in class discovery for human tumors. In this paper we focus on the task of unsupervised gene selection. The problem of selecting a small subset of genes is particularly challenging as the datasets involved are typically characterized by a very small sample size ?? the order of few tens of tissue samples ??d by a very large feature space as the number of genes tend to be in the high thousands. We propose a model independent approach which scores candidate gene selections using spectral properties of the candidate affinity matrix. The algorithm is very straightforward to implement yet contains a number of remarkable properties which guarantee consistent sparse selections. To illustrate the value of our approach we applied our algorithm on five different datasets. The first consists of time course data from four well studied Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937). The other four datasets include three well studied treatment outcomes (large cell lymphoma, childhood medulloblastomas, breast tumors) and one unpublished dataset (lymph status). We compared our approach both with other unsupervised methods (SOM,PCA,GS) and with supervised methods (SNR,RMB,RFE). The results clearly show that our approach considerably outperforms all the other unsupervised approaches in our study, is competitive with supervised methods and in some case even outperforms supervised approaches.