4 resultados para direct mapping
em Massachusetts Institute of Technology
Resumo:
This paper explores the concept of Value Stream Analysis and Mapping (VSA/M) as applied to Product Development (PD) efforts. Value Stream Analysis and Mapping is a method of business process improvement. The application of VSA/M began in the manufacturing community. PD efforts provide a different setting for the use of VSA/M. Site visits were made to nine major U.S. aerospace organizations. Interviews, discussions, and participatory events were used to gather data on (1) the sophistication of the tools used in PD process improvement efforts, (2) the lean context of the use of the tools, and (3) success of the efforts. It was found that all three factors were strongly correlated, suggesting success depends on both good tools and lean context. Finally, a general VSA/M method for PD activities is proposed. The method uses modified process mapping tools to analyze and improve process.
Resumo:
Current Value Stream Map Future Value Stream Map Research Motivation Key Research Questions
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
This paper explores the concept of Value Stream Analysis and Mapping (VSA/M) as applied to Product Development (PD) efforts. Value Stream Analysis and Mapping is a method of business process improvement. The application of VSA/M began in the manufacturing community. PD efforts provide a different setting for the use of VSA/M. Site visits were made to nine major U.S. aerospace organizations. Interviews, discussions, and participatory events were used to gather data on (1) the sophistication of the tools used in PD process improvement efforts, (2) the lean context of the use of the tools, and (3) success of the efforts. It was found that all three factors were strongly correlated, suggesting success depends on both good tools and lean context. Finally, a general VSA/M method for PD activities is proposed. The method uses modified process mapping tools to analyze and improve process.