2 resultados para digital knowledge maps

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid increase in low-cost and sophisticated digital technology the need for techniques to authenticate digital material will become more urgent. In this paper we address the problem of authenticating digital signals assuming no explicit prior knowledge of the original. The basic approach that we take is to assume that in the frequency domain a "natural" signal has weak higher-order statistical correlations. We then show that "un-natural" correlations are introduced if this signal is passed through a non-linearity (which would almost surely occur in the creation of a forgery). Techniques from polyspectral analysis are then used to detect the presence of these correlations. We review the basics of polyspectral analysis, show how and why these tools can be used in detecting forgeries and show their effectiveness in analyzing human speech.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a methodology, a representation, and an implemented program for troubleshooting digital circuit boards at roughly the level of expertise one might expect in a human novice. Existing methods for model-based troubleshooting have not scaled up to deal with complex circuits, in part because traditional circuit models do not explicitly represent aspects of the device that troubleshooters would consider important. For complex devices the model of the target device should be constructed with the goal of troubleshooting explicitly in mind. Given that methodology, the principal contributions of the thesis are ways of representing complex circuits to help make troubleshooting feasible. Temporally coarse behavior descriptions are a particularly powerful simplification. Instantiating this idea for the circuit domain produces a vocabulary for describing digital signals. The vocabulary has a level of temporal detail sufficient to make useful predictions abut the response of the circuit while it remains coarse enough to make those predictions computationally tractable. Other contributions are principles for using these representations. Although not embodied in a program, these principles are sufficiently concrete that models can be constructed manually from existing circuit descriptions such as schematics, part specifications, and state diagrams. One such principle is that if there are components with particularly likely failure modes or failure modes in which their behavior is drastically simplified, this knowledge should be incorporated into the model. Further contributions include the solution of technical problems resulting from the use of explicit temporal representations and design descriptions with tangled hierarchies.