2 resultados para digital devices

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

I have designed and implemented a system for the multilevel verification of synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the schematic of an MOS circuit and a specification of the circuit's intended digital behavior. Silica Pithecus determines if the circuit meets its specification. If the circuit fails to meet its specification Silica Pithecus returns to the designer the reason for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors) as unidirectional digital devices, Silica Pithecus models primitives more realistically. Transistors are modelled as bidirectional devices of varying resistances, and nodes are modelled as capacitors. Silica Pithecus operates hierarchically, interactively, and incrementally. Major contributions of this research include a formal understanding of the relationship between different behavioral descriptions (e.g., signal, boolean, and arithmetic descriptions) of the same device, and a formalization of the relationship between the structure, behavior, and context of device. Given these formal structures my methods find sufficient conditions on the inputs of circuits which guarantee the correct operation of the circuit in the desired descriptive domain. These methods are algorithmic and complete. They also handle complex phenomena such as races and charge sharing. Informal notions such as races and hazards are shown to be derivable from the correctness conditions used by my methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a methodology, a representation, and an implemented program for troubleshooting digital circuit boards at roughly the level of expertise one might expect in a human novice. Existing methods for model-based troubleshooting have not scaled up to deal with complex circuits, in part because traditional circuit models do not explicitly represent aspects of the device that troubleshooters would consider important. For complex devices the model of the target device should be constructed with the goal of troubleshooting explicitly in mind. Given that methodology, the principal contributions of the thesis are ways of representing complex circuits to help make troubleshooting feasible. Temporally coarse behavior descriptions are a particularly powerful simplification. Instantiating this idea for the circuit domain produces a vocabulary for describing digital signals. The vocabulary has a level of temporal detail sufficient to make useful predictions abut the response of the circuit while it remains coarse enough to make those predictions computationally tractable. Other contributions are principles for using these representations. Although not embodied in a program, these principles are sufficiently concrete that models can be constructed manually from existing circuit descriptions such as schematics, part specifications, and state diagrams. One such principle is that if there are components with particularly likely failure modes or failure modes in which their behavior is drastically simplified, this knowledge should be incorporated into the model. Further contributions include the solution of technical problems resulting from the use of explicit temporal representations and design descriptions with tangled hierarchies.