13 resultados para data structures

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

XP provides efficient and flexible support for pretty printing in Common Lisp. Its single greatest advantage is that it allows the full benefits of pretty printing to be obtained when printing data structures, as well as when printing program code. XP is efficient, because it is based on a linear time algorithm that uses only a small fixed amount of storage. XP is flexible, because users can control the exact form of the output via a set of special format directives. XP can operate on arbitrary data structures, because facilities are provided for specifying pretty printing methods for any type of object. XP also modifies the way abbreviation based on length, nesting depth, and circularity is supported so that they automatically apply to user-defined functions that perform output ??g., print functions for structures. In addition, a new abbreviation mechanism is introduced that can be used to limit the total numbers of lines printed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

XP provides efficient and flexible support for pretty printing in Common Lisp. Its single greatest advantage is that it allows the full benefits of pretty printing to be obtained when printing data structures, as well as when printing program code. XP is efficient, because it is based on a linear time algorithm that uses a small fixed amount of storage. XP is flexible, because users can control the exact form of the output via a set of special format directives. XP can operate on arbitrary data structures, because facilities are provided for specifying pretty printing methods for any type of object.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Behavior Language is a rule-based real-time parallel robot programming language originally based on ideas from [Brooks 86], [Connell 89], and [Maes 89]. It compiles into a modified and extended version of the subsumption architecture [Brooks 86] and thus has backends for a number of processors including the Motorola 68000 and 68HCll, the Hitachi 6301, and Common Lisp. Behaviors are groups of rules which are activatable by a number of different schemes. There are no shared data structures across behaviors, but instead all communication is by explicit message passing. All rules are assumed to run in parallel and asynchronously. It includes the earlier notions of inhibition and suppression, along with a number of mechanisms for spreading of activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Program design is an area of programming that can benefit significantly from machine-mediated assistance. A proposed tool, called the Design Apprentice (DA), can assist a programmer in the detailed design of programs. The DA supports software reuse through a library of commonly-used algorithmic fragments, or cliches, that codifies standard programming. The cliche library enables the programmer to describe the design of a program concisely. The DA can detect some kinds of inconsistencies and incompleteness in program descriptions. It automates detailed design by automatically selecting appropriate algorithms and data structures. It supports the evolution of program designs by keeping explicit dependencies between the design decisions made. These capabilities of the DA are underlaid bya model of programming, called programming by successive elaboration, which mimics the way programmers interact. Programming by successive elaboration is characterized by the use of breadth-first exposition of layered program descriptions and the successive modifications of descriptions. A scenario is presented to illustrate the concept of the DA. Technques for automating the detailed design process are described. A framework is given in which designs are incrementally augmented and modified by a succession of design steps. A library of cliches and a suite of design steps needed to support the scenario are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Floyd-Hoare methodology completely dominates the field of program verification and has contributed much to our understanding of how programs might be analyzed. Useful but limited verifiers have been developed using Floyd-Hoare techniques. However, it has long been known that it is difficult to handle side effects on shared data structures within the Floyd-Hoare framework. Most examples of successful Floyd-Hoare axioms for assignment to complex data structures, similar statements have been used by London. This paper demonstrates an error in these formalizations and suggests a different style of verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Garbage collector performance in LISP systems on custom hardware has been substantially improved by the adoption of lifetime-based garbage collection techniques. To date, however, successful lifetime-based garbage collectors have required special-purpose hardware, or at least privileged access to data structures maintained by the virtual memory system. I present here a lifetime-based garbage collector requiring no special-purpose hardware or virtual memory system support, and discuss its performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The key to understanding a program is recognizing familiar algorithmic fragments and data structures in it. Automating this recognition process will make it easier to perform many tasks which require program understanding, e.g., maintenance, modification, and debugging. This report describes a recognition system, called the Recognizer, which automatically identifies occurrences of stereotyped computational fragments and data structures in programs. The Recognizer is able to identify these familiar fragments and structures, even though they may be expressed in a wide range of syntactic forms. It does so systematically and efficiently by using a parsing technique. Two important advances have made this possible. The first is a language-independent graphical representation for programs and programming structures which canonicalizes many syntactic features of programs. The second is an efficient graph parsing algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional parallel computer architectures do not provide support for non-uniformly distributed objects. In this thesis, I introduce sparsely faceted arrays (SFAs), a new low-level mechanism for naming regions of memory, or facets, on different processors in a distributed, shared memory parallel processing system. Sparsely faceted arrays address the disconnect between the global distributed arrays provided by conventional architectures (e.g. the Cray T3 series), and the requirements of high-level parallel programming methods that wish to use objects that are distributed over only a subset of processing elements. A sparsely faceted array names a virtual globally-distributed array, but actual facets are lazily allocated. By providing simple semantics and making efficient use of memory, SFAs enable efficient implementation of a variety of non-uniformly distributed data structures and related algorithms. I present example applications which use SFAs, and describe and evaluate simple hardware mechanisms for implementing SFAs. Keeping track of which nodes have allocated facets for a particular SFA is an important task that suggests the need for automatic memory management, including garbage collection. To address this need, I first argue that conventional tracing techniques such as mark/sweep and copying GC are inherently unscalable in parallel systems. I then present a parallel memory-management strategy, based on reference-counting, that is capable of garbage collecting sparsely faceted arrays. I also discuss opportunities for hardware support of this garbage collection strategy. I have implemented a high-level hardware/OS simulator featuring hardware support for sparsely faceted arrays and automatic garbage collection. I describe the simulator and outline a few of the numerous details associated with a "real" implementation of SFAs and SFA-aware garbage collection. Simulation results are used throughout this thesis in the evaluation of hardware support mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents a method for viewing complex programs as built up out of simpler ones. The central idea is that typical programs are built up in a small number of stereotyped ways. The method is designed to make it easier for an automatic system to work with programs. It focuses on how the primitive operations performed by a program are combined together in order to produce the actions of the program as a whole. It does not address the issue of how complex data structures are built up from simpler ones, nor the relationships between data structures and the operations performed on them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Linear graph reduction is a simple computational model in which the cost of naming things is explicitly represented. The key idea is the notion of "linearity". A name is linear if it is only used once, so with linear naming you cannot create more than one outstanding reference to an entity. As a result, linear naming is cheap to support and easy to reason about. Programs can be translated into the linear graph reduction model such that linear names in the program are implemented directly as linear names in the model. Nonlinear names are supported by constructing them out of linear names. The translation thus exposes those places where the program uses names in expensive, nonlinear ways. Two applications demonstrate the utility of using linear graph reduction: First, in the area of distributed computing, linear naming makes it easy to support cheap cross-network references and highly portable data structures, Linear naming also facilitates demand driven migration of tasks and data around the network without requiring explicit guidance from the programmer. Second, linear graph reduction reveals a new characterization of the phenomenon of state. Systems in which state appears are those which depend on certain -global- system properties. State is not a localizable phenomenon, which suggests that our usual object oriented metaphor for state is flawed.