1 resultado para crowdsensing, sensori, android, crowdsourcing, crowd, piattaforma, maps chart
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (233)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (24)
- Aston University Research Archive (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (5)
- Brock University, Canada (58)
- Cambridge University Engineering Department Publications Database (43)
- CentAUR: Central Archive University of Reading - UK (33)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Archives@Colby (4)
- Digital Commons @ Winthrop University (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (54)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (50)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (91)
- RDBU - Repositório Digital da Biblioteca da Unisinos (9)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (91)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (3)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (2)
- University of Michigan (2)
- University of Southampton, United Kingdom (16)
- University of Washington (1)
- USA Library of Congress (1)
- WestminsterResearch - UK (2)
Resumo:
The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.