8 resultados para correlation-based feature selection
em Massachusetts Institute of Technology
Resumo:
We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.
Resumo:
In model-based vision, there are a huge number of possible ways to match model features to image features. In addition to model shape constraints, there are important match-independent constraints that can efficiently reduce the search without the combinatorics of matching. I demonstrate two specific modules in the context of a complete recognition system, Reggie. The first is a region-based grouping mechanism to find groups of image features that are likely to come from a single object. The second is an interpretive matching scheme to make explicit hypotheses about occlusion and instabilities in the image features.
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
A novel approach to multiclass tumor classification using Artificial Neural Networks (ANNs) was introduced in a recent paper cite{Khan2001}. The method successfully classified and diagnosed small, round blue cell tumors (SRBCTs) of childhood into four distinct categories, neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS), using cDNA gene expression profiles of samples that included both tumor biopsy material and cell lines. We report that using an approach similar to the one reported by Yeang et al cite{Yeang2001}, i.e. multiclass classification by combining outputs of binary classifiers, we achieved equal accuracy with much fewer features. We report the performances of 3 binary classifiers (k-nearest neighbors (kNN), weighted-voting (WV), and support vector machines (SVM)) with 3 feature selection techniques (Golub's Signal to Noise (SN) ratios cite{Golub99}, Fisher scores (FSc) and Mukherjee's SVM feature selection (SVMFS))cite{Sayan98}.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.