5 resultados para contour enhancement
em Massachusetts Institute of Technology
Resumo:
Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.
Resumo:
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
Resumo:
The problem of using image contours to infer the shapes and orientations of surfaces is treated as a problem of statistical estimation. The basis for solving this problem lies in an understanding of the geometry of contour formation, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shape imposed by projection is treated as a signal to be estimated, and variations of non-projective origin are treated as noise. The resulting method is then extended to the estimation of curved surfaces, and applied successfully to natural images. Next, the geometric treatment is further extended by relating countour curvature to surface curvature, using cast shadows as a model for contour generation. This geometric relation, combined with a statistical model, provides a measure of goodness-of-fit between a surface and an image contour. The goodness-of-fit measure is applied to the problem of establishing registration between an image and a surface model. Finally, the statistical estimation strategy is experimentally compared to human perception of orientation: human observers' judgements of tilt correspond closely to the estimates produced by the planar strategy.
Resumo:
The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.
Resumo:
We enhance photographs shot in dark environments by combining a picture taken with the available light and one taken with the flash. We preserve the ambiance of the original lighting and insert the sharpness from the flash image. We use the bilateral filter to decompose the images into detail and large scale. We reconstruct the image using the large scale of the available lighting and the detail of the flash. We detect and correct flash shadows. This combines the advantages of available illumination and flash photography.