21 resultados para constraint
em Massachusetts Institute of Technology
Resumo:
In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
Several algorithms for optical flow are studied theoretically and experimentally. Differential and matching methods are examined; these two methods have differing domains of application- differential methods are best when displacements in the image are small (<2 pixels) while matching methods work well for moderate displacements but do not handle sub-pixel motions. Both types of optical flow algorithm can use either local or global constraints, such as spatial smoothness. Local matching and differential techniques and global differential techniques will be examined. Most algorithms for optical flow utilize weak assumptions on the local variation of the flow and on the variation of image brightness. Strengthening these assumptions improves the flow computation. The computational consequence of this is a need for larger spatial and temporal support. Global differential approaches can be extended to local (patchwise) differential methods and local differential methods using higher derivatives. Using larger support is valid when constraint on the local shape of the flow are satisfied. We show that a simple constraint on the local shape of the optical flow, that there is slow spatial variation in the image plane, is often satisfied. We show how local differential methods imply the constraints for related methods using higher derivatives. Experiments show the behavior of these optical flow methods on velocity fields which so not obey the assumptions. Implementation of these methods highlights the importance of numerical differentiation. Numerical approximation of derivatives require care, in two respects: first, it is important that the temporal and spatial derivatives be matched, because of the significant scale differences in space and time, and, second, the derivative estimates improve with larger support.
Resumo:
The 1989 AI Lab Winter Olympics will take a slightly different twist from previous Olympiads. Although there will still be a dozen or so athletic competitions, the annual talent show finale will now be a display not of human talent, but of robot talent. Spurred on by the question, "Why aren't there more robots running around the AI Lab?", Olympic Robot Building is an attempt to teach everyone how to build a robot and get them started. Robot kits will be given out the last week of classes before the Christmas break and teams have until the Robot Talent Show, January 27th, to build a machine that intelligently connects perception to action. There is no constraint on what can be built; participants are free to pick their own problems and solution implementations. As Olympic Robot Building is purposefully a talent show, there is no particular obstacle course to be traversed or specific feat to be demonstrated. The hope is that this format will promote creativity, freedom and imagination. This manual provides a guide to overcoming all the practical problems in building things. What follows are tutorials on the components supplied in the kits: a microprocessor circuit "brain", a variety of sensors and motors, a mechanical building block system, a complete software development environment, some example robots and a few tips on debugging and prototyping. Parts given out in the kits can be used, ignored or supplemented, as the kits are designed primarily to overcome the intertia of getting started. If all goes well, then come February, there should be all kinds of new members running around the AI Lab!
Resumo:
Both multilayer perceptrons (MLP) and Generalized Radial Basis Functions (GRBF) have good approximation properties, theoretically and experimentally. Are they related? The main point of this paper is to show that for normalized inputs, multilayer perceptron networks are radial function networks (albeit with a non-standard radial function). This provides an interpretation of the weights w as centers t of the radial function network, and therefore as equivalent to templates. This insight may be useful for practical applications, including better initialization procedures for MLP. In the remainder of the paper, we discuss the relation between the radial functions that correspond to the sigmoid for normalized inputs and well-behaved radial basis functions, such as the Gaussian. In particular, we observe that the radial function associated with the sigmoid is an activation function that is good approximation to Gaussian basis functions for a range of values of the bias parameter. The implication is that a MLP network can always simulate a Gaussian GRBF network (with the same number of units but less parameters); the converse is true only for certain values of the bias parameter. Numerical experiments indicate that this constraint is not always satisfied in practice by MLP networks trained with backpropagation. Multiscale GRBF networks, on the other hand, can approximate MLP networks with a similar number of parameters.
Resumo:
This thesis introduces elements of a theory of design activity and a computational framework for developing design systems. The theory stresses the opportunistic nature of designing and the complementary roles of focus and distraction, the interdependence of evaluation and generation, the multiplicity of ways of seeing over the history of a design session versus the exclusivity of a given way of seeing over an arbitrarily short period, and the incommensurability of criteria used to evaluate a design. The thesis argues for a principle based rather than rule based approach to designing documents. The Discursive Generator is presented as a computational framework for implementing specific design systems, and a simple system for arranging blocks according to a set of formal principles is developed by way of illustration. Both shape grammars and constraint based systems are used to contrast current trends in design automation with the discursive approach advocated in the thesis. The Discursive Generator is shown to have some important properties lacking in other types of systems, such as dynamism, robustness and the ability to deal with partial designs. When studied in terms of a search metaphor, the Discursive Generator is shown to exhibit behavior which is radically different from some traditional search techniques, and to avoid some of the well-known difficulties associated with them.
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
Humans rapidly and reliably learn many kinds of regularities and generalizations. We propose a novel model of fast learning that exploits the properties of sparse representations and the constraints imposed by a plausible hardware mechanism. To demonstrate our approach we describe a computational model of acquisition in the domain of morphophonology. We encapsulate phonological information as bidirectional boolean constraint relations operating on the classical linguistic representations of speech sounds in term of distinctive features. The performance model is described as a hardware mechanism that incrementally enforces the constraints. Phonological behavior arises from the action of this mechanism. Constraints are induced from a corpus of common English nouns and verbs. The induction algorithm compiles the corpus into increasingly sophisticated constraints. The algorithm yields one-shot learning from a few examples. Our model has been implemented as a computer program. The program exhibits phonological behavior similar to that of young children. As a bonus the constraints that are acquired can be interpreted as classical linguistic rules.
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
This report describes a computational system with which phonologists may describe a natural language in terms of autosegmental phonology, currently the most advanced theory pertaining to the sound systems of human languages. This system allows linguists to easily test autosegmental hypotheses against a large corpus of data. The system was designed primarily with tonal systems in mind, but also provides support for tree or feature matrix representation of phonemes (as in The Sound Pattern of English), as well as syllable structures and other aspects of phonological theory. Underspecification is allowed, and trees may be specified before, during, and after rule application. The association convention is automatically applied, and other principles such as the conjunctivity condition are supported. The method of representation was designed such that rules are designated in as close a fashion as possible to the existing conventions of autosegmental theory while adhering to a textual constraint for maximum portability.
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.
Resumo:
I describe an approach to forming hypotheses about hidden mechanism configurations within devices given external observations and a vocabulary of primitive mechanisms. An implemented causal modelling system called JACK constructs explanations for why a second piece of toast comes out lighter, why the slide in a tire gauge does not slip back inside when the gauge is removed from the tire, and how in a refrigerator a single substance can serve as a heat sink for the interior and a heat source for the exterior. I report the number of hypotheses admitted for each device example, and provide empirical results which isolate the pruning power due to different constraint sources.