9 resultados para concurrent training

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report addresses the problem of fault tolerance to system failures for database systems that are to run on highly concurrent computers. It assumes that, in general, an application may have a wide distribution in the lifetimes of its transactions. Logging remains the method of choice for ensuring fault tolerance. Generational garbage collection techniques manage the limited disk space reserved for log information; this technique does not require periodic checkpoints and is well suited for applications with a broad range of transaction lifetimes. An arbitrarily large collection of parallel log streams provide the necessary disk bandwidth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational models are arising is which programs are constructed by specifying large networks of very simple computational devices. Although such models can potentially make use of a massive amount of concurrency, their usefulness as a programming model for the design of complex systems will ultimately be decided by the ease in which such networks can be programmed (constructed). This thesis outlines a language for specifying computational networks. The language (AFL-1) consists of a set of primitives, ad a mechanism to group these elements into higher level structures. An implementation of this language runs on the Thinking Machines Corporation, Connection machine. Two significant examples were programmed in the language, an expert system (CIS), and a planning system (AFPLAN). These systems are explained and analyzed in terms of how they compare with similar systems written in conventional languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes Optimist, an optimizing compiler for the Concurrent Smalltalk language developed by the Concurrent VLSI Architecture Group. Optimist compiles Concurrent Smalltalk to the assembly language of the Message-Driven Processor (MDP). The compiler includes numerous optimization techniques such as dead code elimination, dataflow analysis, constant folding, move elimination, concurrency analysis, duplicate code merging, tail forwarding, use of register variables, as well as various MDP-specific optimizations in the code generator. The MDP presents some unique challenges and opportunities for compilation. Due to the MDP's small memory size, it is critical that the size of the generated code be as small as possible. The MDP is an inherently concurrent processor with efficient mechanisms for sending and receiving messages; the compiler takes advantage of these mechanisms. The MDP's tagged architecture allows very efficient support of object-oriented languages such as Concurrent Smalltalk. The initial goals for the MDP were to have the MDP execute about twenty instructions per method and contain 4096 words of memory. This compiler shows that these goals are too optimistic -- most methods are longer, both in terms of code size and running time. Thus, the memory size of the MDP should be increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concurrent Smalltalk is the primary language used for programming the J- Machine, a MIMD message-passing computer containing thousands of 36-bit processors connected by a very low latency network. This thesis describes in detail Concurrent Smalltalk and its implementation on the J-Machine, including the Optimist II global optimizing compiler and Cosmos fine-grain parallel operating system. Quantitative and qualitative results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.