7 resultados para computational model
em Massachusetts Institute of Technology
Resumo:
A computational model of observation in quantum mechanics is presented. The model provides a clean and simple computational paradigm which can be used to illustrate and possibly explain some of the unintuitive and unexpected behavior of some quantum mechanical systems. As examples, the model is used to simulate three seminal quantum mechanical experiments. The results obtained agree with the predictions of quantum mechanics (and physical measurements), yet the model is perfectly deterministic and maintains a notion of locality.
Resumo:
Computational theories of action have generally understood the organized nature of human activity through the construction and execution of plans. By consigning the phenomena of contingency and improvisation to peripheral roles, this view has led to impractical technical proposals. As an alternative, I suggest that contingency is a central feature of everyday activity and that improvisation is the central kind of human activity. I also offer a computational model of certain aspects of everyday routine activity based on an account of improvised activity called running arguments and an account of representation for situated agents called deictic representation .
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
Linear graph reduction is a simple computational model in which the cost of naming things is explicitly represented. The key idea is the notion of "linearity". A name is linear if it is only used once, so with linear naming you cannot create more than one outstanding reference to an entity. As a result, linear naming is cheap to support and easy to reason about. Programs can be translated into the linear graph reduction model such that linear names in the program are implemented directly as linear names in the model. Nonlinear names are supported by constructing them out of linear names. The translation thus exposes those places where the program uses names in expensive, nonlinear ways. Two applications demonstrate the utility of using linear graph reduction: First, in the area of distributed computing, linear naming makes it easy to support cheap cross-network references and highly portable data structures, Linear naming also facilitates demand driven migration of tasks and data around the network without requiring explicit guidance from the programmer. Second, linear graph reduction reveals a new characterization of the phenomenon of state. Systems in which state appears are those which depend on certain -global- system properties. State is not a localizable phenomenon, which suggests that our usual object oriented metaphor for state is flawed.
Resumo:
This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data.
Resumo:
The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets.
Resumo:
In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.