1 resultado para compressive sampling
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (38)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (67)
- Boston University Digital Common (3)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (117)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (6)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (5)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (14)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (17)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (72)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (31)
- Publishing Network for Geoscientific & Environmental Data (116)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (86)
- Queensland University of Technology - ePrints Archive (81)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (69)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (5)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We present a new method for estimating the expected return of a POMDP from experience. The estimator does not assume any knowle ge of the POMDP and allows the experience to be gathered with an arbitrary set of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons.We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to the REINFORCE algorithm showing an order of magnitude reduction in the number of trials required.