1 resultado para chitosan derivative
em Massachusetts Institute of Technology
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (25)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (128)
- Cochin University of Science & Technology (CUSAT), India (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (72)
- Instituto Politécnico do Porto, Portugal (5)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (12)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (33)
- Queensland University of Technology - ePrints Archive (261)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (128)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (9)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (10)
- University of Queensland eSpace - Australia (9)
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.