1 resultado para carbothermal reduction process.
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- Archive of European Integration (1)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (11)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (67)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (34)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (533)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (15)
- WestminsterResearch - UK (4)
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.