2 resultados para breaking load and extension
em Massachusetts Institute of Technology
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.