1 resultado para box constrained minimization
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archive of European Integration (1)
- Aston University Research Archive (20)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (26)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (90)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (56)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (30)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (4)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (2)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (14)
- National Center for Biotechnology Information - NCBI (51)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (118)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositorio de la Universidad de Cuenca (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (49)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (37)
- Université de Montréal (1)
- Université de Montréal, Canada (11)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (8)
- University of Michigan (97)
- University of Queensland eSpace - Australia (48)
- University of Southampton, United Kingdom (3)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.