3 resultados para biological model

em Massachusetts Institute of Technology


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model for the general flow in the neocortex. The basic process, called "sequence-seeking," is a search for a sequence of mappings or transformations, linking source and target representations. The search is bi-directional, "bottom-up" as well as "top-down," and it explores in parallel a large numbe rof alternative sequences. This operation is implemented in a structure termed "counter streams," in which multiple sequences are explored along two separate, complementary pathways which seeking to meet. The first part of the paper discusses the general sequence-seeking scheme and a number of related processes, such as the learning of successful sequences, context effects, and the use of "express lines" and partial matches. The second part discusses biological implications of the model in terms of connections within and between cortical areas. The model is compared with existing data, and a number of new predictions are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested.